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1 Overview

If you are new to lavaan, this is the place to start. In this tutorial, we introduce the basic components of lavaan:
the model syntax, the fitting functions (cfa, sem and growth), and the main extractor functions (summary,
coef, fitted, inspect). After we have provided two simple examples, we briefly discuss some important topics:
meanstructures, multiple groups, growth curve models, mediation analysis, and categorical data. Along the
way, we hope to give you just enough information to get you started (but no more).



2 Before you start

Before you start, please read these points carefully:

o First of all, you must have a recent version (4.0.0 or higher) of R installed. You can download the latest
version of R from this page.

o Some important features are NOT available (yet) in lavaan:

— multilevel sem with random slopes (this is under development)

— support for variable types other than continuous, binary and ordinal (for example: zero-inflated count
data, nominal data, non-Gaussian continuous data); it is unlikely that this will be part of lavaan any
time soon, for the simple reason that these variable types need numerical quadrature, and this is too
slow to be practical in (pure) R.

— support for discrete latent variables (mixture models, latent classes) (although you can use the
sampling weights and multiple group features to mimic some mixture models)

We hope to add these features to lavaan in the near future (but please do not ask when).

o The lavaan package is free open-source software. This means (among other things) that there is no
warranty whatsoever. On the other hand, you can verify the source code yourself: https://github.com/y
rosseel /lavaan/

o If you need help, you can (only) ask questions in the lavaan discussion group. Go to https://groups.g
oogle.com/d/forum/lavaan/ and join the group. Once you have joined the group, you can email your
questions to lavaan@googlegroups.com. Please do not email me directly.

o I do not offer statistical advice. For general (non lavaan-specific) questions about SEM, consider posting
to the SEMNET discussion group.

If you think you have found a bug, or if you have a suggestion for improvement, you can either email me
directly, or open an issue on github (see https://github.com/yrosseel /lavaan/issues). If you report a bug,
always provide a minimal reproducible example (a short R script and some data).


http://cran.r-project.org/
https://github.com/yrosseel/lavaan/
https://github.com/yrosseel/lavaan/
https://groups.google.com/d/forum/lavaan/
https://groups.google.com/d/forum/lavaan/
mailto:lavaan@googlegroups.com
https://github.com/yrosseel/lavaan/issues

3 Installation

The lavaan package is available on CRAN. Therefore, to install lavaan, simply start up R, and type in the R
console:

install.packages("lavaan", dependencies = TRUE)
You can check if the installation was succesful by typing

library(lavaan)

This is lavaan 0.6-18
lavaan is FREE software! Please report any bugs.

A startup message will be displayed showing the version number (always report this in your papers), and a
reminder that this is free software. If you see this message, you are ready to start.



4 Model syntax 1

At the heart of the lavaan package is the ‘model syntax’ The model syntax is a description of the model to be
estimated. In this section, we briefly explain the elements of the lavaan model syntax. More details are given
in the examples that follow.

In the R environment, a regression formula has the following form:
y ~x1 +x2 + x3 + x4

In this formula, the tilde (“~”) is the regression operator. On the left-hand side of the operator, we have the
dependent variable (y), and on the right-hand side, we have the independent variables, separated by the “+”
operator. In lavaan, a typical model is simply a set (or system) of regression formulas, where some variables
(starting with an ‘f” below) may be latent. For example:

y ~ f1 + f2 + x1 + x2
f1 ~ £f2 + £3
f2 ~ £3 + x1 + x2

If we have latent variables in any of the regression formulas, we must ‘define’ them by listing their (manifest
or latent) indicators. We do this by using the special operator “=~”, which can be read as is measured by. For
example, to define the three latent variables £1, £2 and £3, we can use something like:

fl =~ y1 + y2 + y3
f2 =~ y4 + yb + y6
£f3 =~ y7 + y8 + y9 + yl10

Furthermore, variances and covariances are specified using a ‘double tilde’ operator, for example:

yl ~~ y1 # variance
yl ~~ y2 # covariance
f1 ~~ £f2 # covariance

And finally, intercepts for observed and latent variables are simple regression formulas with only an intercept
(explicitly denoted by the number ‘1’) as the only predictor:

yl ~ 1
f1~1



Using these four formula types, a large variety of latent variable models can be described. The current set of
formula types is summarized in the table below.

formula type operator mnemonic

latent variable definition =~ is measured by
regression ~ is regressed on
(residual) (co)variance o is correlated with
intercept ~ 1 intercept

A complete lavaan model syntax is simply a combination of these formula types, enclosed between single quotes.
For example:

myModel <- ' # regressions
yl + y2 ~ f1 + £2 + x1 + x2
f1 ~ £2 + £3
f2 ~ £3 + x1 + x2

# latent variable definitions
f1 =~ y1 + y2 + y3
f2 =~ y4 + yb + y6
£f3 =~ y7 + y8 + y9 + y10

# variances and covariances

yl ~~ y1
yl ~~ y2
f1 ~~ £2

# intercepts
yl ~ 1
f1i-~1

There reason why you should use single quotes is that this is the only way (in R) to allow for double quotes
inside a string. See 7Quotes in R for more information.

You can type this syntax interactively at the R prompt, but it is much more convenient to type the whole model
syntax first in an external text editor. And when you are done, you can copy/paste it to the R console. If you
are using RStudio, open a new ‘R script’, and type your model syntax (and all other R commands needed for
this session) in the source editor of RStudio. And save your script, so you can reuse it later on.

The code piece above will produce a model syntax object, called myModel that can be used later when calling a
function that actually estimates this model given a dataset. Note that formulas can be split over multiple lines,
and you can use comments (starting with the # character) and blank lines within the single quotes to improve
the readability of the model syntax.

You may split your model syntax is multiple parts. For example:


http://www.rstudio.com/

partl <- ' # latent variable definitiomns
fl =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6
£f3 =~ y7 + y8 + y9 + yi10

part2 <- ' # fix covariance between f1 and f2 to zero
f1 ~~ 0*£f2

When fitting the model, you may then simply concatenate the multiple parts together as follows:

fit <- cfa(model = c(partl, part2), data = myData)



5 A CFA example

We start with a simple example of confirmatory factor analysis, using the cfa() function, which is a
user-friendly function for fitting CFA models. The lavaan package contains a built-in dataset called
HolzingerSwineford1939. See the help page for this dataset by typing

7HolzingerSwineford1939

at the R prompt. This is a ‘classic’ dataset that is used in many papers and books on Structural Equation
Modeling (SEM). The data consists of mental ability test scores of seventh- and eighth-grade children from two
different schools (Pasteur and Grant-White). In our version of the dataset, only 9 out of the original 26 tests
are included. A CFA model that is often proposed for these 9 variables consists of three latent variables (or
factors), each with three indicators:

e a visual factor measured by 3 variables: x1, x2 and x3
e a textual factor measured by 3 variables: x4, x5 and x6
e a speed factor measured by 3 variables: x7, x8 and x9

The figure below contains a graphical representation of the three-factor model.

x1

X2

x3

x4
x5

x6

X7

x8

X9

Figure 5.1: A 3 factor CFA example

The corresponding lavaan syntax for specifying this model is as follows:
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visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

In this example, the model syntax only contains three ‘latent variable definitions’. Each formula has the following
format:

latent variable =~ indicatorl + indicator2 + indicator3

We call these expressions latent variable definitions because they define how the latent variables are ‘indicated
by’ a set of (typically observed) variables, often called ‘indicators’ Note that the special “=~" operator in the
middle consists of a sign (”=*) character and a tilde ("~") character next to each other. The reason why this
model syntax is so short, is that behind the scenes, the cfa() function will take care of several things. First, by
default, the factor loading of the first indicator of a latent variable is fixed to 1, thereby fixing the scale of the
latent variable. Second, residual variances are added automatically. And third, all exogenous latent variables
are correlated by default. This way, the model syntax can be kept concise. On the other hand, the user remains
in control, since all this ‘default’ behavior can be overridden and/or switched off.

We can enter the model syntax using the single quotes:

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

We can now fit the model as follows:

fit <- cfa(HS.model, data = HolzingerSwineford1939)
The cfa() function is a dedicated function for fitting confirmatory factor analysis models. The first argument
is the user-specified model. The second argument is the dataset that contains the observed variables. Once the
model has been fitted, the summary() function provides a nice summary of the fitted model:

summary (fit, fit.measures = TRUE)

The output should look familiar to users of other SEM software. If you find it confusing or esthetically unpleasing,
please let us know, and we will try to improve it.

lavaan 0.6-18 ended normally after 35 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 21
Number of observations 301

Model Test User Model:
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Test statistic
Degrees of freedom
P-value (Chi-square)

Model Test Baseline Model:

Test statistic
Degrees of freedom
P-value

User Model versus Baseline Model:

Comparative Fit Index (CFI)
Tucker-Lewis Index (TLI)

Loglikelihood and Information Criteria:

Loglikelihood user model (HO)
Loglikelihood unrestricted model (H1)

Akaike (AIC)
Bayesian (BIC)
Sample-size adjusted Bayesian (SABIC)

Root Mean Square Error of Approximation:
RMSEA
90 Percent confidence interval - lower
90 Percent confidence interval - upper
P-value H_0O: RMSEA <= 0.050
P-value H_0O: RMSEA >= 0.080
Standardized Root Mean Square Residual:
SRMR
Parameter Estimates:
Standard errors
Information

Information saturated (hl) model

Latent Variables:

Estimate Std.Err z-value

visual =~
x1 1.000

85.

918.

-3737.
-3695.

7517.
7595.
7528.

O O O O O

306
24

.000

852
36

.000

.931
.896

745
092

490
339
739

.092
.071
.114
.001
.840

.065

Standard
Expected

Structured

PC>lzl)
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x2 0.554 0.100 5.554 0.000

x3 0.729 0.109 6.685 0.000
textual =~

x4 1.000

x5 1.113 0.065 17.014 0.000

x6 0.926 0.055 16.703 0.000
speed =~

x7 1.000

x8 1.180 0.165 7.152 0.000

x9 1.082 0.151 7.155 0.000

Covariances:

Estimate Std.Err z-value P(C|zl)

visual ~~
textual 0.408 0.074 5.552 0.000
speed 0.262 0.056 4.660 0.000

textual ~~
speed 0.173 0.049 3.518 0.000

Variances:

Estimate Std.Err z-value P(lzl)
.x1 0.549 0.114 4.833 0.000
.xX2 1.134 0.102 11.146 0.000
.x3 0.844 0.091 9.317 0.000
.x4 0.371 0.048 7.779 0.000
.x5 0.446 0.058 7.642 0.000
.x6 0.356 0.043 8.277 0.000
X7 0.799 0.081 9.823 0.000
.x8 0.488 0.074 6.573 0.000
.x9 0.566 0.071 8.003 0.000
visual 0.809 0.145 5.564 0.000
textual 0.979 0.112 8.737 0.000
speed 0.384 0.086 4.451 0.000

The output consists of three parts. The first nine lines are called the header. The header contains the following
information:

e the lavaan version number

e did optimization end normally or not, and how many iterations were needed

o the estimator that was used (here: ML, for maximum likelihood)

o the optimizer that was used to find the best fitting parameter values for this estimator (here: NLMINB)

o the number of model parameters (here: 21)

o the number of observations that were effectively used in the analysis (here: 301)

e a section called Model Test User Model: which provides a test statistic, degrees of freedom, and a
p-value for the model that was specified by the user.

The next section contains additional fit measures, and is only shown because we use the optional argument
fit.measures = TRUE. It starts with the line Model Test Baseline Model: and ends with the value for the
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SRMR. The last section contains the parameter estimates. It starts with (technical) information about the
method that was used to compute the standard errors. (Most users can safely ignore this information). Then, it
tabulates all free (and fixed) parameters that were included in the model. Typically, first the latent variables are
shown, followed by covariances and (residual) variances. The first column (Estimate) contains the (estimated
or fixed) parameter value for each model parameter; the second column (Std.err) contains the standard error
for each estimated parameter; the third column (Z-value) contains the Wald statistic (which is simply obtained
by dividing the parameter value by its standard error), and the last column (P(>|z|)) contains the p-value for
testing the null hypothesis that the parameter value equals zero in the population.

Note that in the Variances: section, there is a dot before the observed variables’ names. This is because they
are dependent (or endogenous) variables (predicted by the latent variables), and therefore, the value for the
variance that is printed in the output is an estimate of the residual variance: the left-over variance that is not
explained by the predictor(s). By contrast, there is no dot before the latent variable names, because they are
exogenous variables in this model (there are no single-headed arrows pointing to them). The values for the
variances here are the estimated total variances of the latent variables.

To wrap up this first example, we summarize the complete code that was needed to fit this three-factor model:

# load the lavaan package (only needed once per session)
library(lavaan)

# specify the model

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

# fit the model
fit <- cfa(HS.model, data = HolzingerSwineford1939)

# display summary output

summary (fit, fit.measures = TRUE)

Simply copying this code and pasting it in R should work. The syntax illustrates the typical workflow in the
lavaan package:

1. Specify your model using the lavaan model syntax. In this example, only latent variable definitions have
been used. In the following examples, other formula types will be used.

2. Fit the model. This requires a dataset containing the observed variables (or alternatively the sample
covariance matrix and the number of observations). In this example, we have used the cfa() function.
Other functions in the lavaan package are sem() and growth() for fitting full structural equation models
and growth curve models respectively. All three functions are so-called user-friendly functions, in the
sense that they take care of many details automatically, so we can keep the model syntax simple and
concise. If you wish to fit non-standard models or if you don’t like the idea that things are done for you
automatically, you can use the lower-level function lavaan() instead, where you have full control.

3. Extract information from the fitted model. This can be a long verbose summary, or it can be a single
number only (say, the RMSEA value). In the spirit of R, you only get what you asked for. We try to not
print out unnecessary information that you would ignore anyway.

14



6 A SEM example

In our second example, we will use the built-in PoliticalDemocracy dataset. This is a dataset that has been
used by Bollen in his 1989 book on structural equation modeling (and elsewhere). To learn more about the
dataset, see its help page and the references therein.

The figure below contains a graphical representation of the model that we want to fit.

x1 %2 *3

et
[

T oy

N

ind&0

Figure 6.1: Political Democracy SEM example

The corresponding lavaan syntax for specifying this model is as follows:

model <- '

# measurement model
x2 + x3

y2 + y3 + y4
yé + y7 + y8

ind60 =~ x1 +
dem60 =~ y1 +
dem65 =~ yb5 +
# regressions
dem60 ~ ind60
dem65 ~ ind60

yl1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8

+ dem60
# residual correlations
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In this example, we use three different formula types: latent variable definitions (using the =~ operator),
regression formulas (using the ~ operator), and (co)variance formulas (using the ~~ operator). The regression
formulas are similar to ordinary formulas in R. The (co)variance formulas typically have the following form:

variable ~~ variable

The variables can be either observed or latent variables. If the two variable names are the same, the expression
refers to the variance (or residual variance) of that variable. If the two variable names are different, the
expression refers to the (residual) covariance among these two variables. The lavaan package automatically
makes the distinction between variances and residual variances.

In our example, the expression y1 ~~ y5 allows the residual variances of the two observed variables to be
correlated. This is sometimes done if it is believed that the two variables have something in common that is
not captured by the latent variables. In this case, the two variables refer to identical scores, but measured in
two different years (1960 and 1965, respectively). Note that the two expressions y2 ~~ y4 and y2 ~~ y6, can
be combined into the expression y2 ~~ y4 + y6, because the variable on the left of the ~~ operator (y2) is the
same. This is just a shorthand notation.

We enter the model syntax as follows:

model <- '

# measurement model
ind60 =~ x1 + x2 + %3
dem60 =~ yl1 + y2 + y3 + y4
dem65 =~ y5 + y6 + y7 + y8

# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60

# residual correlations

yl ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8

To fit the model and see the results we can type:

fit <- sem(model, data = PoliticalDemocracy)
summary (fit, standardized = TRUE)

lavaan 0.6-18 ended normally after 68 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 31
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Number of observations
Model Test User Model:

Test statistic

Degrees of freedom

P-value (Chi-square)

Parameter Estimates:

Standard errors
Information

Information saturated (hl) model

Latent Variables:

Estimate
ind60 =~
x1 1.000
x2 2.180
x3 1.819
dem60 =~
y1 1.000
y2 1.257
y3 1.058
y4 1.265
dem65 =~
y5 1.000
y6 1.186
y7 1.280
y8 1.266
Regressions:
Estimate
dem60 ~
ind60 1.483
dem65 ~
ind60 0.572
dem60 0.837
Covariances:
Estimate
.yl ~~
.y5 0.624
y2 -
.y4 1.313
.y6 2.153
.y3 ~~

Std.

o

Std.

Std.

0.
0.

Err

.139
.152

.182
.151
.145

.169
.160
.158

Err

.399

.221
.098

Err

.358

702
734

75

38.125

35

0.329

Standard
Expected
Structured
z-value P(C|zl)
15.742 0.000
11.967 0.000
6.889 0.000
6.987 0.000
8.722 0.000
7.024 0.000
8.002 0.000
8.007 0.000
z-value P(C|zl)
3.715 0.000
2.586 0.010
8.514 0.000
z-value P(C|zl)
1.741 0.082
1.871 0.061
2.934 0.003
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Std.1lv

0.670
.460
.218

=

.223
.794
.361
.812

NN NN

.103
.493
.691
.662

NN NN

Std.1lv

0.447

0.182

0.885

Std.1lv

0.624

1.313
2.153

Std.

o O

O O O O

o O O O

Std.

all

.920
.973
.872

.850
L7117
.722
.846

.808
. 746
.824
.828

all

.447

.182

.885

.all

.296

.273
.356



.y7

0.795 0.608 1.308

.y4 ~~
.y8 0.348 0.442 0.787
.y6 ~~
.y8 1.356 0.568 2.386
Variances:

Estimate Std.Err z-value
.x1 0.082 0.019 4.184
.X2 0.120 0.070 1.718
.x3 0.467 0.090 5.177
.yl 1.891 0.444 4.256
.y2 7.373 1.374 5.366
.y3 5.067 0.952 5.324
.y4 3.148 0.739 4.261
.y5 2.3561 0.480 4.895
.y6 4.954 0.914 5.419
.y7 3.431 0.713 4.814
.y8 3.254 0.695 4.685
ind60 0.448 0.087 5.173
.dem60 3.956 0.921 4.295
.dem65 0.172 0.215 0.803

0.

0.

0.

191

431

017

P(>1zl)

0.
.086
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.422

O O O O O O OO OO O o o

The function sem() is very similar to the function cfa()

‘completely standardized solution’.

The complete code to specify and fit this model is printed again below:

library(lavaan) # only needed once per session
model <- '

#

measurement model

ind60 =~ x1 + x2 + x3
dem60 =~ yl1 + y2 + y3 + y4
dem65 =~ y5 + y6 + y7 + y8
regressions

dem60 ~ ind60

dem65 ~ ind60 + dem60
residual correlations

yl ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8

18

000

In fact, the two functions are currently almost
identical, but this may change in the future. In the summary () function, we omitted the fit.measures = TRUE
argument. Therefore, you only get the basic chi-square test statistic. The argument standardized = TRUE
augments the output with standardized parameter values. Two extra columns of standardized parameter values
are printed. In the first column (labeled Std.1lv), only the latent variables are standardized. In the second
column (labeled Std.all), both latent and observed variables are standardized. The latter is often called the

0.

0.

1.

795

348

356

Std.1lv

0.
.120
.467
.891
.373
.067
.148
.361
.954
.431
.254
.000
.800
.039

QO F,r WWPHPNWOLNEFL OO

082

Std.
.154
.053
.239
277
.486
.478
.285
. 347
.443
.322
.315
.000
.800
.039

O O, OO O OO OO OO oo

.191

.109

.338

all



y6 ~~ y8

fit <- sem(model, data=PoliticalDemocracy)
summary (fit, standardized=TRUE)
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7 Model syntax 2

7.1 Fixing parameters

Consider a simple one-factor model with 4 indicators. By default, lavaan will always fix the factor loading of
the first indicator to 1. The other three factor loadings are free, and their values are estimated by the model.
But suppose that you have good reasons to fix all the factor loadings to 1. The syntax below illustrates how
this can be done:

f =~ y1 + 1xy2 + 1xy3 + 1*xy4d

In general, to fix a parameter in a lavaan formula, you need to pre-multiply the corresponding variable in
the formula by a numerical value. This is called the pre-multiplication mechanism and will be used for many
purposes. As another example, consider again the three-factor Holzinger and Swineford CFA model. Recall that,
by default, all exogenous latent variables in a CFA model are correlated. But if you wish to fix the correlation
(or covariance) between a pair of latent variables to zero, you need to explicitly add a covariance-formula for this
pair, and fix the parameter to zero. In the syntax below, we allow the covariance between the latent variables
visual and textual to be free, but the two other covariances are fixed to zero. In addition, we fix the variance
of the factor speed to unity. Therefore, there is no need anymore to set the factor loading of its first indicator
(x7) equal to one. To force this factor loading to be free, we pre-multiply it with NA, as a hint to lavaan that
the value of this parameter is ‘missing’ and therefore still unknown.

# three-factor model

visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6

speed =~ NA*x7 + x8 + x9
# orthogonal factors

visual ~~ O*speed

textual ~~ O*speed
# fix variance of speed factor
speed ~~ l*speed

If you need to constrain all covariances of the latent variables in a CFA model to be orthogonal, there is a
shortcut. You can omit the covariance formulas in the model syntax and simply add an argument orthogonal
= TRUE to the function call:

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

20



fit.HS.ortho <- cfa(HS.model,
data = HolzingerSwineford1939,
orthogonal = TRUE)

Similarly, if you want to fix the variances of all the latent variables in a CFA model to unity, there is again a
shortcut. Simply add the argument std.lv = TRUE to the function call:

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model,
data = HolzingerSwineford1939,
std.lv = TRUE)

If the argument std.1lv = TRUE is used, the factor loadings of the first indicator of each latent variable will no
longer be fixed to 1.

7.2 Starting Values

The lavaan package automatically generates starting values for all free parameters. Normally, this works fine.
But if you prefer to provide your own starting values, you are free to do so. The way it works is based on the
pre-multiplication mechanism that we discussed before. But the numeric constant is now the argument of a
special function start(). An example will make this clear:

visual =~ x1 + start(0.8)*x2 + start(1l.2)*x3
textual =~ x4 + start(0.5)*x5 + start(1.0)*x6
speed =~ x7 + start(0.7)*x8 + start(1.8)*x9

7.3 Parameter labels

A nice property of the lavaan package is that all free parameters are automatically named according to a simple
set of rules. This is convenient, for example, if equality constraints are needed (see the next subsection). To
see how the naming mechanism works, we will use the model that we used for the Politcal Democracy data.

model <- '

# latent variable definitions
ind60 =~ x1 + x2 + %3
dem60 =~ y1 + y2 + y3 + y4
dem65 =~ yb5 + y6 + y7 + y8

# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60
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# residual (co)variances

yl ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y38
fit <- sem(model,

data = PoliticalDemocracy)

coef (fit)
ind60=~x2 ind60=~x3 dem60=~y2 dem60=~y3 dem60=~y4 dem65=~y6
2.180 1.819 1.257 1.058 1.265 1.186
dem65=~y7 dem65=~y8 dem60~ind60 dem65~ind60 dem65~dem60 yl~~y5
1.280 1.266 1.483 0.572 0.837 0.624
y2~~y4 y2~~y6 y3~~y7 y4~~y8 y6~~y8 xl~~x1
1.313 2.153 0.795 0.348 1.356 0.082
X2~~x2 x3~~x3 yl~~yl y2~~y2 y3~~y3 y4~~y4
0.120 0.467 1.891 7.373 5.067 3.148
y5~~y5 y6~~y6 yr~~y7 y8~~y8 ind60~~ind60 dem60~~dem60
2.351 4.954 3.431 3.254 0.448 3.956

dem65~~dem65

0.172

The function coef () extracts the estimated values of the free parameters in the model, together with their names.
Each name consists of three parts and reflects the part of the formula where the parameter was involved. The
first part is the variable name that appears on the left-hand side (lhs) of the formula. The middle part is the
operator type (op) of the formula, and the third part is the variable in the right-hand side (rhs) of the formula
that corresponds with the parameter.

Often, it is convenient to choose your own labels for specific parameters. The way this works is similar to fixing
a parameter. But instead of pre-multiplying with a numerical constant, we use a character string (the label)
instead. In the example below, we ‘label’ the factor loading of the x3 indicator with the label myLabel:

model <- '

# latent variable definitions
ind60 =~ x1 + x2 + myLabel*x3
dem60 =~ y1 + y2 + y3 + y4
dem65 =~ yb + y6 + y7 + y8

# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60

# residual (co)variances

yl ~~ y5
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y2 ~~ y4 + y6

y3 ~~ y7
y4 ~~ y8
y6 ~~ y8

It is important that labels start with a letter (a-zA-Z), and certainly not with a digit. For example ‘13bis’ is
not a valid label, and will confuse the lavaan syntax parser. (Note: before version 0.4-8, it was necessary to use
the modifier 1abel () to specify a custom label. Although it is still supported, it is not recommended anymore.
The only reason why it should be used in new syntax is if the label contains an operator like “=~".)

7.4 Modifiers

We have seen the use of the pre-multiplication mechanism (using the * operator) a number of times: to fix a
parameter, to provide a starting value, and to label a parameter. We refer to these operations as modifiers,
because they modify some properties of certain model parameters. More modifiers will be introduced later.

Each term on the right-hand side in a formula can have one modifier only. If you want to specify more modifiers
for the same parameter, you need to list the term multiple times in the same formula. For example:

f =~ y1 + y2 + myLabel*y3 + start(0.5)*y3 + y4

The indicator y3 was listed twice, each time with a different modifier. The parser will accumulate all the
different modifiers, but still treat y3 as a single indicator.

7.5 Simple equality constraints

In some applications, it is useful to impose equality constraints on one or more otherwise free parameters.
Consider again the three-factor H&S CFA model. Suppose a user has a priori reasons to believe that the factor
loadings of the x2 and x3 indicators are equal to each other. Instead of estimating two free parameters, lavaan
should only estimate a single free parameter, and use that value for both factor loadings. The main mechanism
to specify this type of (simple) equality constraint is by using labels: if two parameters have the same label,
they will be considered to be the same, and only one value will be computed for them. This is illustrated in
the following syntax:

visual =~ x1 + v2%x2 + v2*x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

Remember: all parameters having the same label will be constrained to be equal.

An alternative approach is to use the equal () modifier. This is useful if no custom label has been specified,
and one needs to refer to the automatically generated label. For example:
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visual =~ x1 + x2 + equal("visual=~x2")*x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

7.6 Nonlinear equality and inequality constraints
Consider the following regression:
y ~ blxxl + b2*x2 + b3*x3

where we have explicitly labeled the regression coefficients as b1, b2 and b3. We create a toy dataset containing
these four variables and fit the regression model:

set.seed(1234)
Data <- data.frame(y = rnorm(100),
x1 = rnorm(100),
x2 = rnorm(100),
x3 = rnorm(100))
model <- ' y ~ bl*xl + b2*x2 + b3*x3 '
fit <- sem(model, data = Data)
coef (fit)

bl b2 b3  y~-~y
-0.052 0.084 0.139 0.970

Suppose that we need to impose the following two (nonlinear) constraints on b;: by = (by + b3)? and b; >
exp(by + bs). The first constraint is an equality constraint. The second is an inequality constraint. To specify
these constraints, you can use the following syntax:

model.constr <- ' # model with labeled parameters
y ~ bl*xl + b2%x2 + b3*x3
# constraints
bl == (b2 + b3)"2
bl > exp(b2 + b3) '

To see the effect of the constraints, we refit the model:

model.constr <- ' # model with labeled parameters
y ~ bl*xl + b2%x2 + b3*x3
# constraints
bl == (b2 + b3)72
bl > exp(b2 + b3) '
fit <- sem(model.constr, data = Data)
coef (fit)
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bl b2 b3 y--y
0.495 -0.405 -0.299 1.610

The reader can verify that the constraints are indeed respected. The equality constraint holds exactly. The
inequality constraint has resulted in an equality between the left-hand side (b, ) and the right-hand side (exp(by+

b))-
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8 Meanstructures

By and large, structural equation models are used to model the covariance matrix of the observed variables
in a dataset. But in some applications, it is useful to bring in the means of the observed variables too. One
way to do this is to explicitly refer to intercepts in the lavaan syntax. This can be done by including ‘intercept
formulas’ in the model syntax. An intercept formula has the following form:

variable ~ 1

The left part of the expression contains the name of the observed or latent variable. The right part contains
the number 1, representing the intercept. For example, in the three-factor H&S CFA model, we can add the

intercepts of the observed variables as follows:

# three-factor model

visual

textual
speed
# intercepts

x1
X2
x3
x4
x5
x6
x7
x8
x9

However, it is more convenient to omit the intercept formulas in the model syntax (unless you want to fix their
values), and to add the argument meanstructure = TRUE in the fitting function. For example, we can refit the

1

[ = e S S

=~ x1 + x2 + x3
~ x4 + x5 + x6
=~ x7 + x8 + x9

three-factor H&S CFA model as follows:

fit <- cfa(HS.model,

data = HolzingerSwineford1939,
meanstructure = TRUE)

summary (fit)
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lavaan 0.6-18 ended normally after 35 iterations

Estimator

Optimization method

Number of model parameters

Number of observations
Model Test User Model:

Test statistic

Degrees of freedom

P-value (Chi-square)

Parameter Estimates:

Standard errors
Information

Information saturated (hl) model

Latent Variables:

Estimate

visual =~
x1 1.000
x2 0.554
x3 0.729

textual =~
x4 1.000
x5 1.113
x6 0.926

speed =~

X7 1.000
x8 1.180
x9 1.082

Covariances:
Estimate

visual ~~
textual 0.408
speed 0.262

textual ~~
speed 0.173

Intercepts:
Estimate
.x1 4.936
.x2 6.088

Std.

Std.
.067
.068

Err

.100
.109

.065
.055

.165
.1561

.Err

.056

.049

Err

ML

NLMINB

30

301

85.306

24

0.000

Standard
Expected
Structured
z-value P(C|zl)
5.554 0.000
6.685 0.000
17.014 0.000
16.703 0.000
7.152 0.000
7.155 0.000
z-value P(C|zl|)
5.5562 0.000
4.660 0.000
3.518 0.000
z-value P(O|zl)
73.473 0.000
89.855 0.000
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.x3
.x4
.x5
.x6
X7
.x8
.x9

Variances:

.x1

.x2

.x3

.x4

.x5

.x6

X7

.x8

.x9
visual
textual
speed

As you can see in the output, the model includes intercept parameters for both the observed and latent variables.
By default, the cfa() and sem() functions fix the latent variable intercepts (which in this case correspond to
the latent means) to zero. Otherwise, the model would not be estimable. Note that the chi-square statistic
and the number of degrees of freedom is the same as in the original model (without a mean structure). The
reason is that we brought in some new data (a mean value for each of the 9 observed variables), but we also
added 9 additional parameters to the model (an intercept for each of the 9 observed variables). The end result
is an identical fit. In practice, the only reason why a user would add intercept-formulas in the model syntax, is
because some constraints must be specified on them. For example, suppose that we wish to fix the intercepts
of the variables x1, x2, x3 and x4 to, say, 0.5. We would write the model syntax as follows:

OO N WN

.250
.061
.341
.186
.186
.527
.374

Estimate

0.
.134
.844
.371
.446
.356
.799
.488
.566
.809
.979
.384

O O O O O O OO O O -

# three-factor model

visual =~ x1 +
textual =~ x4 +
speed =~ X7 +

# intercepts with

549

x2 + x3
x5 + x6
x8 + x9
fixed values

x1l + x2 + x3 + x4 ~ 0.5%1

where we have used the left-hand side of the formula to ‘repeat’ the right-hand side for each element of the

left-hand side.

O O OO O O o

Std.
.114
.102
.091
.048
.058
.043
.081
.074
.071
.145
.112
.086

O O OO O OO OO oo o

.065
.067
.074
.063
.063
.058
.058

Err

34.
45.
58.
34.
66.
94.
92.

579
694
452
667
766
854
546

z-value

4

[ES
[EY

S 00 O 00 O © 0 N N ©

.833
.146
.317
779
.642
277
.823
.573
.003
.564
.T37
.451
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.000
.000
.000
.000
.000
.000
.000

PC>lzl)

0.
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

O O O O O O O O O oo

000



9 Multiple groups

The lavaan package has full support for multiple groups. To request a multiple group analysis, you need to add
the name of the group variable in your dataset to the argument group in the fitting function. By default, the
same model is fitted in all groups. In the following example, we fit the H&S CFA model for the two schools
(Pasteur and Grant-White).

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model,
data = HolzingerSwineford1939,
group = "school")

summary (fit)

lavaan 0.6-18 ended normally after 57 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 60

Number of observations per group:
Pasteur 156
Grant-White 145

Model Test User Model:

Test statistic 115.851
Degrees of freedom 48
P-value (Chi-square) 0.000
Test statistic for each group:
Pasteur 64.309
Grant-White 51.542

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (hl) model Structured
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Group 1 [Pasteur]:

Latent Variables:

Estimate
visual =~
x1 1.000
x2 0.394
x3 0.570
textual =~
x4 1.000
x5 1.183
x6 0.875
speed =~
X7 1.000
x8 1.125
x9 0.922
Covariances:
Estimate
visual ~~
textual 0.479
speed 0.185
textual ~~
speed 0.182
Intercepts:
Estimate
.x1 4.941
.x2 5.984
.x3 2.487
.x4 2.823
.xb 3.995
.x6 1.922
X7 4.432
.x8 5.563
.x9 5.418
Variances:
Estimate
.x1 0.298
.X2 1.334
.x3 0.989
.x4 0.425
.x5 0.456
.x6 0.290

Std.

Std.
.095
.098
.093
.092
.105
.079
.087
.078
.079

O O OO OO O o o

Std.
.232
.158
.136
.069
.086
.050

O O O O O o

Err

.122
.140

.102
.077

277

.225

.Err

.106
.077

.069

Err

Err

z-value

11.
11.

.220
.076

613
421

.057
.104

z-value

4.
2.

2.

531
397

628

z-value

52.
60.
26.
30.
38.
24.
51.
71.
68.

249
949
778
689
183
321
181
214
440

z-value

g oo N o

.286
.464
.271
.138
.292
.780

30

P(>1z)

.001
.000

.000
.000

.000
.000

PC>lzl)

0.
0.

0.

000
017

009

P(>lzl)

0.
.000
.000
.000
.000
.000
.000
.000
.000

O O O O O O o o

000

P(>1z)

0.
.000
.000
.000
.000
.000

O O O O O
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X7 0.820
.x8 0.510
.x9 0.680
visual 1.097
textual 0.894
speed 0.350
Group 2 [Grant-White]:
Latent Variables:
Estimate
visual =~
x1 1.000
x2 0.736
x3 0.925
textual =~
x4 1.000
x5 0.990
x6 0.963
speed =~
x7 1.000
x8 1.226
x9 1.058
Covariances:
Estimate
visual ~~
textual 0.408
speed 0.276
textual ~~
speed 0.222
Intercepts:
Estimate
.x1 4.930
.X2 6.200
.x3 1.996
.x4 3.317
.xb 4.712
.x6 2.469
X7 3.921
.x8 5.488
.x9 5.327
Variances:
Estimate

O O O O O O

Std.

Std.
.095
.092
.086
.093
.096
.094
.086
.087
.085

O O OO OO O o o

Std.

.125
.116
.104
.276
.150
.126

Err

.155
.166

.087
.085

.187

.165

.Err

.098
.076

.073

Err

Err

N O w o & O

.580
.406
.516
.967
.963
778

z-value

11.
11.

.760
.583

418
377

.569
.429

z-value

4.
3.

3.

153
639

022

z-value

51.
67.
23.
35.
48.
26.
45.
63.
62.

696
416
195
625
986
277
819
174
571

z-value

O O O O O O

.000
.000
.000
.000
.000
.005

PC>lzl)

.000
.000

.000
.000

.000
.000

P(>lzl)

0.
0.

0.

000
000

003

P(>1z)

0.
.000
.000
.000
.000
.000
.000
.000
.000

O O O O O O o o

000

P(>1zl)
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.x1 0.715 0.126 5.676 0.000
.x2 0.899 0.123 7.339 0.000
.x3 0.557 0.103 5.409 0.000
.x4 0.315 0.065 4.870 0.000
.x5 0.419 0.072 5.812 0.000
.x6 0.406 0.069 5.880 0.000
.x7 0.600 0.091 6.584 0.000
.x8 0.401 0.094 4.249 0.000
.x9 0.535 0.089 6.010 0.000
visual 0.604 0.160 3.762 0.000
textual 0.942 0.152 6.177 0.000
speed 0.461 0.118 3.910 0.000

If you want to fix parameters or provide starting values, you can use the same pre-multiplication techniques, but
the single argument is now replaced by a vector of arguments, one for each group. If you use a single element
instead of a vector (which is not recommended), that element will be applied for all groups. If you specify a
single label, this will generate a warning as this would imply equality constraints across groups. For example:

HS.model <- ' visual =~ x1 + 0.5*x2 + c(0.6, 0.8)*x3
textual =~ x4 + start(c(1.2, 0.6))*x5 + c(al, a2)*x6
speed =~ x7 + x8 + x9 '

In the definition of the latent factor visual, we have fixed the factor loading of the indicator x3 to the value
‘0.6’ in the first group, and to the value ‘0.8 in the second group, while the factor loading of the indicator x2
is fixed to the value ‘0.5 in both groups. In the definition of the textual factor, two different starting values
are provided for the x5 indicator; one for each group. In addition, we have labeled the factor loading of the x6
indicator as al in the first group, and a2 in the second group. It may be tempting to write a*x6. But using
a single label in a multiple group setting has a double effect: it gives the label a to the factor loading of x6
in both groups, and as a result, those two parameters are now constrained to be equal. Because this may be
unintended, lavaan will produce a warning message about this. If this is really intended, it is much better to
use a vector of labels: c(a, a)*x6.

To verify the effects of our modifiers, we refit the model:
fit <- cfa(HS.model,
data = HolzingerSwineford1939,

group = "school")
summary (£fit)

lavaan 0.6-18 ended normally after 45 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 56

Number of observations per group:
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Pasteur

Grant-White

Model Test User Model:

Test statistic

Degrees of freedom
P-value (Chi-square)

Test statistic for each group:

Pasteur

Grant-White

Parameter Estimates:

Standard errors

Information

Information saturated (hl) model

Group 1 [Pasteur]:

Latent Variables:

visual =~

x1

x2

x3
textual =~

x4

x5

x6
speed =~

x7

x8

x9

Covariances:
visual ~~
textual
speed
textual ~~
speed

Intercepts:

.x1

(al)

Estimate

.000
0.500
.600

.000
.185
.876
.000

.129
0.931

Estimate

0.460
0.182

0.181

Estimate
4.941

Std.

Std.

Std.
0.

Err

.102
.077

.279
.227

Err

.103
.076

.069

Err
094

156
145

118.976
52
0.000

64.901
54.075

Standard
Expected
Structured

z-value P(O|zl)

11.598 0.000
11.409 0.000

4.055 0.000
4.103 0.000
z-value P(C|zl|)

4.479 0.000
2.408 0.016

2.625 0.009

z-value P(C|zl)
52.379 0.000
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.xX2
.x3
.x4
.x5
.x6
X7
.x8
.x9

Variances:

.x1

.X2

.x3

.x4

.x5

.x6

X7

.x8

.x9
visual
textual
speed

.984
.487
.823
.995
.922
.432
.563
.418

OO =W NN O

Estimate

0.388
.304
.965
427
.454
.289
.824
.510
677
.001
.892
. 346

O O Fr OO O OO O O

Group 2 [Grant-White]:

Latent Variables:

visual =~

x1

x2

x3
textual =~

x4

x5

x6
speed =~

x7

x8

x9

(a2)

Covariances:

visual ~~
textual
speed

Estimate

1.000
0.500
0.800

1.000
0.990
0.963

1.000

1.228
1.081

Estimate

0.454
0.315

O O O O O O o o

Std.
.129
.155
.120
.069
.086
.050
.124
.116
.105
.172
.150
.125

O O O O O O O OO O O o

Std.

.100
.092
.092
.105
.079
.087
.078
.079

Err

Err

.087
.085

.188
.168

.Err

.099
.079

59.
26.
30.
38.
24.
51.
T1.
68.

945
983
689
183
320
181
214
440

z-value

3.005
.432
.016
.153
.270
.763
.617
417
L4719
.803
.953
.768

N O o1 O OO O 01 OO O

z-value

11.425
11.374

6.539
6.417

z-value

4.585
4.004

.000
.000
.000
.000
.000
.000
.000
.000

O O O O O O o o

P(>1z)

0.003
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.006

O O O O O O O O O o o

P(>lzl)

0.000
0.000

0.000
0.000

P(>lzl)

0.000
0.000
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textual ~~
speed 0.222 0.073 3.049 0.002

Intercepts:
Estimate Std.Err z-value P(lzl)

.x1 4.930 0.097 50.688 0.000
.x2 6.200 0.089 69.616 0.000
.x3 1.996 0.086 23.223 0.000
.x4 3.317 0.093 35.625 0.000
.x5 4.712 0.096  48.986 0.000
.X6 2.469 0.094 26.277 0.000
X7 3.921 0.086 45.819 0.000
.x8 5.488 0.087 63.174 0.000
.x9 5.327 0.085 62.571 0.000
Variances:

Estimate Std.Err z-value P(>|z])
.x1 0.637 0.115 5.539 0.000
.X2 0.966 0.120 8.076 0.000
.x3 0.601 0.091 6.591 0.000
.x4 0.316 0.065 4.877 0.000
.xb5 0.418 0.072 5.805 0.000
.x6 0.407 0.069 5.887 0.000
X7 0.609 0.091 6.658 0.000
.x8 0.411 0.094 4,385 0.000
.x9 0.522 0.089 5.887 0.000
visual 0.735 0.132 5.544 0.000
textual 0.942 0.152 6.177 0.000
speed 0.453 0.117 3.871 0.000

9.1 Fixing parameters in some groups, but not all

Sometimes, we wish to fix the value of a parameter in all groups, except for one particular group. In this
group, we wish to freely estimate the value of that parameter. The modifier for this parameter is again a vector
containing the fixed values for this parameter for each group, but we can use NA to force a parameter to be free
in one (or more) group(s). Suppose for example we have four groups. We define a latent variable (say f) with
three indicators. We wish to fix the factor loading of indicator item2 to 1.0 in all but the second group. We
can write something like

f =~ iteml + c(1,NA,1,1)*item2 + item3
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9.2 Constraining a single parameter to be equal across groups

If you want to constrain one or more parameters to be equal across groups, you need to give them the same
label. For example, to constrain the factor loading of the indicator x3 to be equal across (two) groups, you can
write:

HS.model <- ' visual =~ x1 + x2 + c(v3,v3)*x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

Again, identical labels imply identical parameters, both within and across groups.

9.3 Constraining groups of parameters to be equal across groups

Although providing identical labels is a very flexible method to specify equality constraints for a few parameters,
there is a more convenient way to impose equality constraints on a whole set of parameters (for example: all
factor loadings, or all intercepts). We call these type of constraints group equality constraints and they can
be specified by the argument group.equal in the fitting function. For example, to constrain (all) the factor
loadings to be equal across groups, you can proceed as follows:

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model,
data = HolzingerSwineford1939,

group = "school",
group.equal = c("loadings"))
summary (£it)

lavaan 0.6-18 ended normally after 42 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 60
Number of equality constraints 6

Number of observations per group:
Pasteur 156
Grant-White 145

Model Test User Model:

Test statistic 124.044
Degrees of freedom 54
P-value (Chi-square) 0.000
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Test statistic for each group:

Pasteur
Grant-White

Parameter Estimates:

Standard errors
Information

Information saturated (hl) model

Group 1 [Pasteur]:

Latent Variables:

Estimate

visual =~
x1 1.000
x2 (.p2.) 0.599
x3 (.p3.) 0.784

textual =~
x4 1.000
x5 (.p5.) 1.083
x6 (.p6.) 0.912

speed =~

X7 1.000
x8 (.p8.) 1.201
x9 (.p9.) 1.038

Covariances:
Estimate

visual ~~
textual 0.416
speed 0.169

textual ~~
speed 0.176

Intercepts:
Estimate
.x1 4.941
.x2 5.984
.x3 2.487
.x4 2.823
.x5 3.995
.x6 1.922
X7 4.432
.x8 5.563
.x9 5.418

Std.

Std.
.093
.100
.094
.093
.101
.081
.086
.078
.079

O O OO O O O o o

Err

.100
.108

.067
.058

.155

.136

Err

.097
.064

.061

Err

68.825

55.219

Standard
Expected
Structured
z-value P(C|zl|)
5.979 0.000
7.267 0.000
16.049 0.000
15.785 0.000
7.738 0.000
7.629 0.000
z-value P(C|zl)
4.271 0.000
2.643 0.008
2.882 0.004
z-value P(C|zl|)
52.991 0.000
60.096 0.000
26.465 0.000
30.371 0.000
39.714 0.000
23.711 0.000
51.540 0.000
71.087 0.000
68.153 0.000
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Variances:

Estimate
.x1 0.551
.x2 1.258
.x3 0.882
.x4 0.434
.x5 0.508
.x6 0.266
X7 0.849
.x8 0.515
.x9 0.658
visual 0.805
textual 0.913
speed 0.305

Group 2 [Grant-White]:

Latent Variables:

Estimate

visual =~
x1 1.000
x2 (.p2.) 0.599
x3 (.p3.) 0.784

textual =~
x4 1.000
x5 (.p5.) 1.083
x6 (.p6.) 0.912

speed =~

x7 1.000
x8 (.p8.) 1.201
x9 (.p9.) 1.038

Covariances:
Estimate

visual ~~
textual 0.437
speed 0.314

textual ~~
speed 0.226

Intercepts:
Estimate
.x1 4.930
.X2 6.200

.x3 1.996

Std.
.137
.155
.128
.070
.082
.050
.114
.095
.096
171
.137
.078

O O O O O OO OO o oo

Std.

Std.
.097
.091
.085

o

Err

Err

.100
.108

.067
.058

.155

.136

.Err

.099
.079

.072

Err

z-value
.010
117
.884
.238
.229
.294
.468
.409
.865
.714
.651
.920

W

[V I I S e ) N ¢ 2 IS B¢ 2 B e) B o) Iie) I 0 0]

z-value

5.979
7.267

16.049
15.785

7.738
7.629

z-value

4.423
3.958

3.144

z-value
50.763
68.379
23.455

PG>lzl)
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

o

O O O O O O O O o oo

PC>lzl)

0.000
0.000

0.000
0.000

0.000
0.000

P(>1zl)

0.000
0.000

0.002

P(>lzl)
0.000
0.000
0.000



.x4
.x5
.x6
X7
.x8
.x9

Variances:

.x1

.X2

.x3

.x4

.x5

.x6

X7

.x8

.x9
visual
textual
speed

The .p2., .p3., .p5, .. labels which appear in the output have been auto-generated to impose the equality
constraints. More ‘group equality constraints’ can be added. In addition to the factor loadings, the following

OO wWwN W

.317
.712
.469
.921
.488
.327

Estimate

0.
.933
.605
.329
.384
.437
.599
.406
.532
.722
.906
.475

O O O O O O O O O o o

645

O O O O O O

Std.
.127
.121
.096
.062
.073
.067
.090
.089
.086
.161
.136
.109

O O O O O OO OO o oo

.092
.100
.091
.086
.087
.085

Err

35.
4a7.
27.
45.
63.
62.

950
173
248
555
257
786

z-value

o

o) B S o) B S e ) B @) B¢ 2 B¢ 2 BN o) BN |

.084
.732
.282
.279
.270
.576
.651
.541
.202
.490
.646
.347

keywords are supported in the group.equal argument:

O O O O O O

.000
.000
.000
.000
.000
.000

P(>lzl)

0.
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

O O O O O O O O o oo

e intercepts: the intercepts of the observed variables
o means: the intercepts/means of the latent variables
e residuals: the residual variances of the observed variables

o residual.covariances: the residual covariances of the observed variables
o lv.variances: the (residual) variances of the latent variables
e lv.covariances: the (residual) covariances of the latent variables

o regressions: all regression coefficients in the model

If you omit the group.equal argument, all parameters are freely estimated in each group (but the model

structure is the same).

But what if you want to constrain a whole group of parameters (say all factor loadings and intercepts) across
groups, except for one or two parameters that need to stay free in all groups. For this scenario, you can use the
argument, group.partial, containing the names of those parameters that need to remain free. For example:

fit <- cfa(HS.model,
data = HolzingerSwineford1939,
group = "school",
group.equal = c("loadings", "intercepts"),
group.partial = c("visual=~x2", "x7~1"))
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9.4 Measurement invariance testing

Before we compare, say, the values of latent means across multiple groups, we first need to establish measurement
invariance. When data is continuous, testing for measurement invariance involves a fixed sequence of model
comparison tests. A typical sequence involves three models:

1. Model 1: configural invariance. The same factor structure is imposed on all groups.
2. Model 2: weak invariance. The factor loadings are constrained to be equal across groups.

3. Model 3: strong invariance. The factor loadings and intercepts are constrained to be equal across groups.

In lavaan, we can proceed as follows:

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

# configural invariance
fitl <- cfa(HS.model, data = HolzingerSwineford1939, group = "school")

# weak invariance
fit2 <- cfa(HS.model, data = HolzingerSwineford1939, group = "school",
group.equal = "loadings")

# strong invariance
fit3 <- cfa(HS.model, data = HolzingerSwineford1939, group = "school",
group.equal = c("intercepts", "loadings"))

# model comparison tests
lavTestLRT(fitl, fit2, fit3)

Chi-Squared Difference Test

Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
fitl 48 7484.4 7706.8 115.85

fit2 54 7480.6 7680.8 124.04 8.192 0.049272 6 0.2244
£fit3 60 7508.6 7686.6 164.10 40.059 0.194211 6 4.435e-07 **x
Signif. codes: O '**x' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The 1avTestLRT() function can be used for model comparison tests. Because we provided three model fits, it
will produce two tests: the first test compares the first model versus the second model, while the second test
compares the second model versus the third model. Because the first p-value is non-significant, we may conclude
that weak invariance (equal factor loadings) is supported in this dataset. However, because the second p-value
is significant, strong invariance is not. Therefore, it is unwise to directly compare the values of the latent means
across the two groups.

40



10 Growth curves

Another important type of latent variable models are latent growth curve models. Growth modeling is often
used to analyze longitudinal or developmental data. In this type of data, an outcome measure is measured on
several occasions, and we want to study the change over time. In many cases, the trajectory over time can be
modeled as a simple linear or quadratic curve. Random effects are used to capture individual differences. The
random effects are conveniently represented by (continuous) latent variables, often called growth factors. In the
example below, we use an artifical dataset called Demo.growth where a score (say, a standardized score on a
reading ability scale) is measured on 4 time points. To fit a linear growth model for these four time points, we
need to specify a model with two latent variables: a random intercept, and a random slope:

# linear growth model with 4 timepoints

# intercept and slope with fixed coefficients
i =~ 1%tl + 1xt2 + 1*%t3 + 1*t4
s =~ 0xtl + 1*%t2 + 2*%t3 + 3*t4

In this model, we have fixed all the coefficients of the growth functions. If i and s are the only ‘latent variables’
in the model, we can use the growth() function to fit this model:

model <- ' i =~ 1xtl + 1%t2 + 1%t3 + 1x*t4d

s =~ 0*xtl + 1xt2 + 2%t3 + 3*t4d '
fit <- growth(model, data=Demo.growth)
summary (£fit)

lavaan 0.6-18 ended normally after 29 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 9
Number of observations 400

Model Test User Model:

Test statistic 8.069
Degrees of freedom 5
P-value (Chi-square) 0.152

Parameter Estimates:
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Standard errors Standard
Information Expected
Information saturated (hl) model Structured

Latent Variables:
Estimate Std.Err =z-value P(C|zl)

i=~
t1 1.000
t2 1.000
t3 1.000
t4 1.000
g =~
t1 0.000
t2 1.000
t3 2.000
t4 3.000
Covariances:
Estimate Std.Err z-value P(>|z])
i....
s 0.618 0.071 8.686 0.000
Intercepts:
Estimate Std.Err z-value P(lzl)
0.615 0.077 8.007 0.000
1.006 0.042 24.076 0.000
Variances:
Estimate Std.Err z-value P(Clzl)
.t1 0.595 0.086 6.944 0.000
.t2 0.676 0.061 11.061 0.000
.t3 0.635 0.072 8.761 0.000
.t4 0.508 0.124 4.090 0.000
i 1.932 0.173 11.194 0.000
0.587 0.052 11.336 0.000

Technically, the growth () function is almost identical to the sem() function. But a mean structure is automati-
cally assumed, and the observed intercepts are fixed to zero by default, while the latent variable intercepts/means
are freely estimated. A slightly more complex model adds two regressors (x1 and x2) that influence the latent
growth factors. In addition, a time-varying covariate c that influences the outcome measure at the four time
points has been added to the model. A graphical representation of this model is presented below.

The complete R code needed to specify and fit this linear growth model with a time-varying covariate is given
below:
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c1 c2 c3 cd *1 X2

Figure 10.1: A growth curve examples

# a linear growth model with a time-varying covariate
model <- '
# intercept and slope with fixed coefficients
i =~ 1xtl + 1*%t2 + 1%t3 + 1xt4
s =~ Oxtl + 1*t2 + 2%t3 + 3*t4
# regressions
i~ x1 + x2
s ~ x1 + x2
# time-varying covariates

tl ~ cl
t2 ~ c2
t3 ~ c3
t4d ~ c4

fit <- growth(model, data = Demo.growth)
summary (fit)
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11 Categorical data

Binary, ordinal and nominal variables are considered categorical (not continuous). It makes a big difference if
these categorical variables are exogenous (independent) or endogenous (dependent) in the model.

11.1 Exogenous categorical variables

If you have a binary exogenous covariate (say, gender), all you need to do is to recode it as a dummy (0/1)
variable. Just like you would do in a classic regression model. If you have an exogenous ordinal variable, you
can use a coding scheme reflecting the order (say, 1,2,3,..) and treat it as any other (numeric) covariate. If you
have a nominal categorical variable with K > 2 levels, you need to replace it by a set of K —1 dummy variables,
again, just like you would do in classical regression.

11.2 Endogenous categorical variables

The lavaan 0.5 series can deal with binary and ordinal (but not nominal) endogenous variables. There are two
ways to communicate to lavaan that some of the endogenous variables are to be treated as categorical:

1. declare them as ‘ordered’ (using the ordered function, which is part of base R) in your data.frame before
you run the analysis; for example, if you need to declare four variables (say, iteml1, item2, item3, item4)
as ordinal in your data.frame (called Data), you can use something like:

Datal[,c("iteml",

"item2",
"item3",
"itemd")] <-
lapply(Datal,c("iteml",
"item2",
"item3",

"item4")], ordered)

2. use the ordered argument when using one of the fitting functions (cfa/sem/growth/lavaan), for example,
if you have four binary or ordinal variables (say, iteml, item2, item3, item4), you can use:

fit <- cfa(myModel, data = myData,

ordered = c("iteml","item2",
"item3","item4"))
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If all the (endogenous) variables are to be treated as categorical, you can use ordered = TRUE as a shortcut.

When the ordered= argument is used, lavaan will automatically switch to the WLSMV estimator: it will use
diagonally weighted least squares (DWLS) to estimate the model parameters, but it will use the full weight
matrix to compute robust standard errors, and a mean- and variance-adjusted test statistic. Other options
are unweighted least squares (ULSMYV), or pairwise maximum likelihood (PML). Full information maximum
likelihood is currently not supported.
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12 Covariance matrix input

If you have no full dataset, but you do have a sample covariance matrix, you can still fit your model. If you
wish to add a mean structure, you need to provide a mean vector too. Importantly, if only sample statistics are
provided, you must specify the number of observations that were used to compute the sample moments. The
following example illustrates the use of a sample covariance matrix as input. First, we read in the lower half of
the covariance matrix (including the diagonal):
lower <- '

11.834

6.947 9.364

6.819 5.091 12.532

4.783 5.028 7.495 9.986

-3.839 -3.889 -3.841 -3.625 9.610
-21.899 -18.831 -21.748 -18.775 35.522 450.288 '

wheaton.cov <-
getCov(lower, names = c("anomia67", "powerless67",
"anomia71", "powerless71l",
"education", "sei"))

The getCov() function makes it easy to create a full covariance matrix (including variable names) if you only
have the lower-half elements (perhaps pasted from a textbook or a paper). Note that the lower-half elements are
written between two single quotes. Therefore, you have some additional flexibility. You can add comments, and
blank lines. If the numbers are separated by a comma, or a semi-colon, that is fine too. For more information
about getCov (), see the online manual page.

Next, we can specify our model, estimate it, and request a summary of the results:
# classic wheaton et al. model

wheaton.model <- '
# latent variables

ses =~ education + sei
alien67 =~ anomia67 + powerless67
alien71 =~ anomia7l + powerless71

# regressions
alien71 ~ alien67 + ses
alien67 ~ ses

# correlated residuals
anomia67 ~~ anomia7l
powerless67 ~~ powerless71
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fit <- sem(wheaton.model,
sample.cov =

sample.nobs =
summary (fit, standardized = TRUE)

lavaan 0.6-18 ended normally after 84

Estimator

Optimization method

Number of model parameters

Number of observations

Model Test User Model:

Test statistic

Degrees of freedom
P-value (Chi-square)

Parameter Estimates:

Standard errors

Information

Information saturated (hl) model

Latent Variables:

ses =~
education
sei

alien67 =~
anomia67
powerless67

alien71 =~
anomia71
powerless71

Regressions:

alien71 ~
alien67
ses

alien67 ~
ses

Estimate

1.000
5.219

1.000
0.979

1.000

0.922

Estimate

0.607
-0.227

-0.575

Std.

Std.

Err

.422

.062

.059

Err

.051
.052

.056

wheaton.cov,
932)

iterations
ML
NLMINB
17
932
4.735
4
0.316
Standard
Expected
Structured
z-value P(C|zl)
12.364 0.000
15.895 0.000
15.498 0.000
z-value P(C|zl)
11.898 0.000
-4.334 0.000
-10.195 0.000
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Std.1lv

.607
13.

609

.663
.606

.850
.628

Std.1lv

0.
-0.

-0.

567
207

563

Std.

all

.842
.642

LT74
.8562

.805

.832

.all

.567
.207

.563



Covariances:
Estimate Std.Err z-value P(C|zl) Std.lv Std.all

.anomia6b7 ~~
.anomia71 1.623 0.314 5.176 0.000 1.623 0.356
.powerless67 ~~
.powerless71 0.339 0.261 1.298 0.194 0.339 0.121
Variances:
Estimate Std.Err z-value P(>|zl) Std.lv Std.all
.education 2.801 0.507 5.525 0.000 2.801 0.292
.sei 264 .597 18.126 14.597 0.000 264.597 0.588
.anomia67 4.731 0.453 10.441 0.000 4.731 0.400
.powerless67 2.563 0.403 6.359 0.000 2.563 0.274
.anomia71 4.399 0.515 8.542 0.000 4.399 0.351
.powerless71 3.070 0.434 7.070 0.000 3.070 0.308
ses 6.798 0.649 10.475 0.000 1.000 1.000
.alien67 4.841 0.467 10.359 0.000 0.683 0.683
.alien71 4.083 0.404 10.104 0.000 0.503 0.503

12.1 The sample.cov.rescale argument

If the estimator is ML (the default), then the sample variance-covariance matrix will be rescaled by a factor
(N-1)/N. The reasoning is the following: the elements in a sample variance-covariance matrix have (usually)
been divided by N-1. But the (normal-based) ML estimator would divide the elements by N. Therefore, we
need to rescale. If you don’t want this to happen (for example in a simulation study), you can provide the
argument sample.cov.rescale = FALSE.

12.2 Multiple groups

If you have multiple groups, the sample.cov argument must be a list containing the sample variance-covariance
matrix of each group as a separate element in the list. If a mean structure is needed, the sample.mean argument
must be a list containing the sample means of each group. Finally, the sample.nobs argument can be either a
list or an integer vector containing the number of observations for each group.
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13 Estimators and more

13.1 Estimators

If all data is continuous, the default estimator in the lavaan package is maximum likelihood (estimator =
"ML"). Alternative estimators available in lavaan are:

e "GLS": generalized least squares. For complete data only.

o "WLS": weighted least squares (sometimes called ADF estimation). For complete data only.
e "DWLS": diagonally weighted least squares

e "ULS": unweighted least squares

e "DLS": distributionally-weighted least squares

e "PML": pairwise maximum likelihood

Many estimators have ‘robust’ variants, meaning that they provide robust standard errors and a scaled test
statistic. For example, for the maximum likelihood estimator, lavaan provides the following robust variants:

e "MLM": maximum likelihood estimation with robust standard errors and a Satorra-Bentler scaled test
statistic. For complete data only.

e "MLMVS": maximum likelihood estimation with robust standard errors and a mean- and variance-adjusted
test statistic (aka the Satterthwaite approach). For complete data only.

e "MLMV": maximum likelihood estimation with robust standard errors and a mean- and variance-adjusted
test statistic (using a scale-shifted approach). For complete data only.

e "MLF": for maximum likelihood estimation with standard errors based on the first-order derivatives, and
a conventional test statistic. For both complete and incomplete data.

e "MLR": maximum likelihood estimation with robust (Huber-White) standard errors and a scaled test statis-
tic that is (asymptotically) equal to the Yuan-Bentler test statistic. For both complete and incomplete
data.

For the DWLS and ULS estimators, lavaan also provides ‘robust’ variants: WLSM, WLSMVS, WLSMV, ULSM, ULSMVS,
ULSMV. Note that for the robust WLS variants, we use the diagonal of the weight matrix for estimation, but we
use the full weight matrix to correct the standard errors and to compute the test statistic.

13.2 ML estimation: Wishart versus Normal

If maximum likelihood estimation is used ("ML" or any of its robust variants), the default behavior of lavaan
is to base the analysis on the so-called biased sample covariance matrix, where the elements are divided by N
instead of N-1. This is done internally, and should not be done by the user. In addition, the chi-square statistic
is computed by multiplying the minimum function value with a factor N (instead of N-1). If you prefer to use
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an unbiased covariance matrix, and N — 1 as the multiplier to compute the chi-square statistic, you need to
specify the likelihood = "wishart" argument when calling the fitting functions. For example:

fit <- cfa(HS.model,
data = HolzingerSwineford1939,
likelihood = "wishart")

fit

lavaan 0.6-18 ended normally after 35 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 21
Number of observations 301

Model Test User Model:

Test statistic 85.022
Degrees of freedom 24
P-value (Chi-square) 0.000

The value of the test statistic will be closer to the value reported by programs like EQS, LISREL or AMOS,
since they all use the ‘Wishart’ approach when using the maximum likelihood estimator. The program Mplus,
on the other hand, uses the ‘normal’ approach to maximum likelihood estimation.

13.3 Missing values

If the data contain missing values, the default behavior is listwise deletion. If the missing mechanism is MCAR
(missing completely at random) or MAR (missing at random), the lavaan package provides case-wise (or ‘full
information’) maximum likelihood estimation. You can turn this feature on, by using the argument missing =
"ML" when calling the fitting function. An unrestricted (h1) model will automatically be estimated, so that all
common fit indices are available.

13.4 Standard errors

Standard errors are (by default) based on the expected information matrix. The only exception is when data
are missing and full information ML is used (via missing = "ML"). In this case, the observed information
matrix is used to compute the standard errors. The user can change this behavior by using the information
argument.

Robust standard errors can be requested explicitly by using se = "robust". Similarly, robust test statistics
can be requested explicitly by using test = "robust". Many more options are possible. See the help page:
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?lavOptions

13.5 Bootstrapping

There are two ways to use the bootstrap in lavaan. FKither you can set se = "bootstrap" or test =
"bootstrap" when fitting the model (and you will get bootstrap standard errors, and/or a bootstrap-based
p-value respectively), or you can use the bootstrapLavaan() function, which needs an already fitted lavaan
object. The latter function can be used to ‘bootstrap’ any statistic (or vector of statistics) that you can extract
from a fitted lavaan object.
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14 Mediation

Consider a classical mediation setup with three variables: Y is the dependent variable, X is the predictor, and M
is a mediator. For illustration, we create a toy dataset containing these three variables, and fit a path analysis
model that includes the direct effect of X on Y and the indirect effect of X on Y via M.

set.seed(1234)
X <- rnorm(100)
M <- 0.5%X + rnorm(100)
Y <= 0.7*M + rnorm(100)
Data <- data.frame(X =X, Y=Y, M = M)
model <- ' # direct effect
Y ~ cx*xX
# mediator
M ~ axX
Y ~ bx*xM
# indirect effect (axb)
ab := axb
# total effect
total := c + (a*b)
fit <- sem(model, data = Data)
summary (£it)

lavaan 0.6-18 ended normally after 1 iteration

Estimator ML
Optimization method NLMINB
Number of model parameters 5
Number of observations 100

Model Test User Model:

Test statistic 0.000
Degrees of freedom 0

Parameter Estimates:

Standard errors Standard
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Information Expected
Information saturated (hl) model Structured
Regressions:
Estimate Std.Err z-value P(lzl)
Y,..
X (c) 0.036 0.104 0.348 0.728
M~
X (a) 0.474 0.103 4.613 0.000
Y~
M (b) 0.788 0.092 8.539 0.000
Variances:
Estimate Std.Err z-value P(lzl)
Y 0.898 0.127 7.071 0.000
.M 1.054 0.149 7.071 0.000
Defined Parameters:
Estimate Std.Err z-value P(>|z])
ab 0.374 0.092 4.059 0.000
total 0.410 0.125 3.287 0.001

The example illustrates the use of the ":=" operator in the lavaan model syntax. This operator ‘defines’ new
parameters which take on values that are an arbitrary function of the original model parameters. The function,
however, must be specified in terms of the parameter labels that are explicitly mentioned in the model syntax.
By default, the standard errors for these defined parameters are computed by using the so-called Delta method.
As with other models, bootstrap standard errors can be requested simply by specifying se = "bootstrap" in

the fitting function.
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15 Modification indices

Modification indices can be requested by adding the argument modindices = TRUE in the summary () call, or by
calling the function modindices() directly. By default, modification indices are printed out for each nonfree (or
fixed-to-zero) parameter. The modification indices are supplemented by the expected parameter change (EPC)
values (column epc). The last three columns contain the standardized EPC values (sepc.1v: only standardizing
the latent variables; sepc.all: standardizing all variables; sepc.nox: standardizing all but exogenous observed
variables).

A typical use of the modindices() function is as follows:
fit <- cfa(HS.model,

data = HolzingerSwineford1939)
modindices(fit, sort = TRUE, maximum.number = 5)

lhs op rhs mi epc sepc.lv sepc.all sepc.nox
30 visual =~ x9 36.411 0.577 0.519 0.515 0.515
76 X7 ~~ x8 34.145 0.536 0.536 0.859 0.859
28 wvisual =~ x7 18.631 -0.422 -0.380 -0.349 -0.349
78 x8 ~~ x9 14.946 -0.423 -0.423 -0.805 -0.805
33 textual =~ x3 9.151 -0.272 -0.269 -0.238 -0.238

This will print out the top 5 parameters (that can be added to the model) that result in the largest modification
index, sorted from high to low.

The modindices () function returns a data frame, which you can sort or filter to extract what you want. For
example, to see only the modification indices for the factor loadings, you can use something like this:

fit <- cfa(HS.model,
data = HolzingerSwineford1939)
mi <- modindices(fit)

mi[mi$op == "=~",]

lhs op rhs mi epc sepc.lv sepc.all sepc.nox
25 wvisual =~ x4 1.211 0.077 0.069 0.059 0.059
26 wvisual =~ x5 7.441 -0.210 -0.189 -0.147 -0.147
27 wvisual =~ x6 2.843 0.111 0.100 0.092 0.092
28 wvisual =~ x7 18.631 -0.422 -0.380 -0.349 -0.349
29 visual =~ x8 4.295 -0.210 -0.189 -0.187 -0.187
30 visual =~ x9 36.411 0.577 0.519 0.515 0.515
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31 textual =~ x1 8.903 0.350 0.347 0.297 0.297
32 textual =~ x2 0.017 -0.011 -0.011 -0.010 -0.010
33 textual =~ x3 9.1561 -0.272 -0.269 -0.238 -0.238
34 textual =~ x7 0.098 -0.021 -0.021 -0.019 -0.019
35 textual =~ x8 3.3569 -0.121 -0.120 -0.118 -0.118
36 textual =~ x9 4.796 0.138 0.137 0.136 0.136
37 speed =~ x1 0.014 0.024 0.015 0.013 0.013
38 speed =~ x2 1.580 -0.198 -0.123 -0.105 -0.105
39 speed =~ x3 0.716 0.136 0.084 0.075 0.075
40 speed =~ x4 0.003 -0.005 -0.003 -0.003 -0.003
41 speed =~ x5 0.201 -0.044 -0.027 -0.021 -0.021
42 speed =~ x6 0.273 0.044 0.027 0.025 0.025

It is important to realize that the modindices() function will only consider fixed-to-zero parameters. If you
have equality constraints in the model, and you wish to examine what happens if you release all (or some) of
these equality constraints, use the lavTestScore() function.
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16 Extracting information

The summary () function gives a nice overview of a fitted model, but is for display only. If you need the actual
numbers for further processing, you may prefer to use one of several ‘extractor’ functions. We have already seen
the coef () function which extracts the estimated parameters of a fitted model. Other extractor functions are
discussed below.

16.1 parameterEstimates

The parameterEstimates() function returns a data.frame containing all the model parameters in the rows:

fit <- cfa(HS.model, data=HolzingerSwineford1939)
parameterEstimates(fit)

lhs op rhs est se z pvalue ci.lower ci.upper
1 visual =~ x1 1.000 0.000 NA NA 1.000 1.000
2 visual =~ x2 0.554 0.100 5.554 0 0.358 0.749
3 visual =~ x3 0.729 0.109 6.685 0 0.516 0.943
4 textual =~ x4 1.000 0.000 NA NA 1.000 1.000
5 textual =~ x5 1.113 0.065 17.014 0 0.985 1.241
6 textual =~ x6 0.926 0.055 16.703 0 0.817 1.035
7 speed =~ x7 1.000 0.000 NA NA 1.000 1.000
8 speed =~ x8 1.180 0.165 7.1562 0 0.857 1.503
9 speed =~ x9 1.082 0.151 7.155 0 0.785 1.378
10 xl ~~ x1 0.549 0.114 4.833 0 0.326 0.772
11 X2 ~~ x2 1.134 0.102 11.146 0 0.934 1.333
12 x3 ~~ x3 0.844 0.091 09.317 0 0.667 1.022
13 x4 ~~ x4 0.371 0.048 7.779 0 0.278 0.465
14 x5 ~~ x5 0.446 0.058 7.642 0 0.332 0.561
15 x6 ~~ x6 0.356 0.043 8.277 0 0.272 0.441
16 X7 ~~ x7 0.799 0.081 9.823 0 0.640 0.959
17 x8 ~~ x8 0.488 0.074 6.573 0 0.342 0.633
18 x9 ~~ x9 0.566 0.071 8.003 0 0.427 0.705
19 wvisual ~~ wvisual 0.809 0.145 5.564 0 0.524 1.094
20 textual ~~ textual 0.979 0.112 8.737 0 0.760 1.199
21 speed ~~ speed 0.384 0.086 4.451 0 0.215 0.553
22 wvisual ~~ textual 0.408 0.074 5.552 0 0.264 0.552
23 wvisual ~~  speed 0.262 0.056 4.660 0 0.152 0.373
24 textual ~~ speed 0.173 0.049 3.518 0 0.077 0.270
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The 1hs (left-hand side), op (operator) and rhs (right-hand side) columns define the parameter. The est,
se, z and pvalue columns provide the point estimate, the standard error, the z-value and the p-value for this
parameter. The last two columns are the lower and upper bounds of a 95% confidence interval around the point
estimate.

16.2 standardizedSolution

The standardizedSolution() function is similar to the parameterEstimates() function, but only shows
the standardized parameter estimates and corresponding standard errors, z-values, p-values and confidence
intervals.

16.3 fitted.values

The fitted() and fitted.values() functions return the model-implied (fitted) covariance matrix (and mean
vector) of a fitted model:

fit <- cfa(HS.model, data = HolzingerSwineford1939)

fitted(fit)

$cov
x1 X2 x3 x4 x5 x6 x7 x8 x9

x1 1.358
x2 0.448 1.382
x3 0.590 0.327 1.275
x4 0.408 0.226 0.298 1.351
x5 0.454 0.252 0.331 1.090 1.660
x6 0.378 0.209 0.276 0.907 1.010 1.196
x7 0.262 0.145 0.191 0.173 0.193 0.161 1.183
x8 0.309 0.171 0.226 0.205 0.228 0.190 0.453 1.022
x9 0.284 0.157 0.207 0.188 0.209 0.174 0.415 0.490 1.015

16.4 residuals

The resid() or residuals() functions return (unstandardized) residuals of a fitted model. This is simply the
difference between the observed and implied covariance matrix and mean vector.

fit <- cfa(HS.model, data = HolzingerSwineford1939)
resid(fit)

$type
[1] "rawll
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$cov
x1 x2 x3 x4 x5 x6 x7 x8 x9
x1 0.000
x2 -0.041 0.000
x3 -0.010 0.124 0.000
x4 0.097 -0.017 -0.090 0.000
x5 -0.014 -0.040 -0.219 0.008 0.000
x6 0.077 0.038 -0.032 -0.012 0.005 0.000
x7 -0.177 -0.242 -0.103 0.046 -0.050 -0.017 0.000
x8 -0.046 -0.062 -0.013 -0.079 -0.047 -0.024 0.082 0.000
x9 0.175 0.087 0.167 0.056 0.086 0.062 -0.042 -0.032 0.000

The lavResiduals() gives more extensive information about the residuals. Per default, it will print both
raw and standardized residuals, as well as several summary statistics (including the SRMR and the unbiased
SRMR).

16.5 vcov

The function vcov() returns the estimated covariance matrix of the parameter estimates.

16.6 AIC and BIC

The AIC() and BIC() functions return the AIC and BIC values of a fitted model.

16.7 fitMeasures

The fitMeasures () function returns all the fit measures computed by lavaan as a named numeric vector.

fit <- cfa(HS.model, data=HolzingerSwineford1939)

fitMeasures(fit)
npar fmin chisq
21.000 0.142 85.306
df pvalue baseline.chisq
24.000 0.000 918.852
baseline.df baseline.pvalue cfi
36.000 0.000 0.931
tli nnfi rfi
0.896 0.896 0.861
nfi pnfi ifi
0.907 0.605 0.931
rni logl unrestricted.logl
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0.931 -3737.745 -3695.092

aic bic ntotal
7517.490 7595.339 301.000
bic2 rmsea rmsea.ci.lower
7528.739 0.092 0.071
rmsea.ci.upper rmsea.ci.level rmsea.pvalue
0.114 0.900 0.001
rmsea.close.hO rmsea.notclose.pvalue rmsea.notclose.hO
0.050 0.840 0.080
rmr Imr_nomean srmr
0.082 0.082 0.065
srmr_bentler srmr_bentler_nomean crmr
0.065 0.065 0.073
crmr_nomean srmr_mplus srmr_mplus_nomean
0.073 0.065 0.065
cn_05 cn_01 gfi
129.490 152.654 0.943
agfi pefi mfi
0.894 0.503 0.903

ecvi

0.423

If you only want the value of a single fit measure, say, the CFI, you give the name (in lower case) as the second
argument:

fit <- cfa(HS.model, data=HolzingerSwineford1939)
fitMeasures(fit, "cfi")

cfi
0.931

Or you can provide a vector of fit measures, as in

fitMeasures(fit, c("cfi","rmsea","srmr"))

cfi rmsea srmr
0.931 0.092 0.065

16.8 lavinspect

If you want to peek inside a fitted lavaan object (the object that is returned by a call to cfa(), sem()or
growth() ), you can use the lavInspect () function, with a variety of options. By default, calling lavInspect ()
on a fitted lavaan object returns a list of the model matrices that are used internally to represent the model.
The free parameters are nonzero integers.
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fit <- cfa(HS.model, data=HolzingerSwineford1939)
lavInspect(fit)

$lambda

visual textul
x1 0 0
x2
x3
x4
x5
x6
X7
x8
x9

O O O O O O N =
O O O b WO O O

$theta

x1 x2 x3 x4 x5
x1 7
x2
x3
x4
x5
x6
x7
x8
x9

10

O O O O O O o o
O O O O O O O
O O O O O O
O O O O O

O O O O

$psi

visual te
visual 16
textual 19
speed 20

speed

D01 O O O O O O O

x6 x7 x8 x9

[EY
N

13

oS O O
o O
o

[EY

o

xtul speed

17
21 18

To see the starting values of parameters in each model matrix, type

lavInspect(fit, what = "start")
$lambda
visual textul speed
x1 1.000 0.000 0.000
x2 0.778 0.000 0.000
x3 1.107 0.000 0.000
x4 0.000 1.000 0.000
x5 0.000 1.133 0.000
x6 0.000 0.924 0.000
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x7 0.000 0.000
x8 0.000 0.000
x9 0.000 0.000

$theta
x1
x1 0.679
x2 0.000
x3 0.000
x4 0.000
x5 0.000
x6 0.000
x7 0.000
x8 0.000
x9 0.000
$psi
visual
textual
speed

x2

.691
.000
.000
.000
.000
.000
.000
.000

O O O O O O o o

visual
0.05
0.00
0.00

O O O O O O o

textul speed

0.05
0.00 0.05

1.000
1.225
0.854

x3 x4
.637
.000 0.675
.000 0.000
.000 0.000
.000 0.000
.000 0.000
.000 0.000

x5

0.830

0.000
0.000
0.000
0.000

x6

0.598
0.000 0.592
0.000 0.000 0.511

0.000 0.000 0.000 0.508

x7

x8 x9

To see how lavaan internally represents a model, you can type

© 00 N O O WN -

= o=
= O

e e e
© 00 N O O W

rhs user block group free ustart exo label plabel
.pl.
.p2.
.p3.
.p4.
.p5.
.p6.
.P7.
.p8.
.p9.
.pl0.
.pll.
.pl2.
.pl13.
.pl4.
.pl5.
.plé6.
.pl7.
.pl8.
.p19.

lavInspect(fit, what = "list")
id lhs op
1 visual =~ x1 1 1
2 visual =~ x2 1 1
3 visual =~ x3 1 1
4 textual =~ x4 1 1
5 textual =~ x5 1 1
6 textual =~ x6 1 1
7  speed =~ x7 1 1
8 speed =~ x8 1 1
9  speed =~ x9 1 1
10 x1l ~~ x1 0 1
11 X2 ~~ x2 0 1
12 x3 ~~ x3 0 1
13 x4 ~~ x4 0 1
14 x5 ~~ x5 0] 1
15 x6 ~~ x6 0 1
16 X7 ~~ X7 0 1
17 x8 ~~ x8 0 1
18 X9 ~~ x9 0 1
19 wvisual ~~ visual 0 1

1

e e = T = T e T T S S e S e S S S S

0

© 0 N O 01 O b WON -

e e
o Ul bk WN - O
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1
NA
NA

1
NA
NA

1
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

0

O O O O O O O OO OO OO O O o oo

start
.000
.7T78
.107
.000
.133
.924
.000
.225
.854
.679
.691
.637
.675
.830
.598
.592
.511
.508
.050

O O O OO OO OO O0OOFr PO, P, P, OF



20 20 textual ~~ textual 0 1 1 17 NA O .p20. 0.050

21 21  speed ~~ speed 0 1 1 18 NA O .p21. 0.050

22 22 visual ~~ textual 0 1 1 19 NA O .p22. 0.000

23 23 visual ~~  speed 0 1 1 20 NA O .p23. 0.000

24 24 textual ~~ speed 0 1 1 21 NA O .p24. 0.000
est se

1 1.000 0.000

2 0.554 0.100

3 0.729 0.109

4 1.000 0.000

5 1.113 0.065

6 0.926 0.055

7 1.000 0.000

8 1.180 0.165

9 1.082 0.151

10 0.549 0.114

11 1.134 0.102

12 0.844 0.091

13 0.371 0.048

14 0.446 0.058

15 0.356 0.043

16 0.799 0.081

17 0.488 0.074

18 0.566 0.071

19 0.809 0.145

20 0.979 0.112

21 0.384 0.086

22 0.408 0.074

23 0.262 0.056

24 0.173 0.049

This is equivalent to the parTable(fit) function. The table that is returned here is called the ‘parameter
table’.

For more lavinspect options, see the help page:

?lavInspect

62



17 Multilevel SEM

If the data is clustered, one way to handle the clustering is to use a multilevel modeling approach. In the SEM
framework, this leads to multilevel SEM. The multilevel capabilities of lavaan are still limited, but you can fit
a two-level SEM with random intercepts (note: only when all data is continuous).

17.1 Multilevel SEM model syntax

To fit a two-level SEM, you must specify a model for both levels, as follows:

model <- '
level: 1
fw =~ y1l + y2 + y3
fw ~ x1 + x2 + x3
level: 2
fb =~ y1 + y2 + y3
fb ~ wl + w2

This model syntax contains two blocks, one for level 1, and one for level 2. Within each block, you can specify
a model just like in the single-level case. To fit this model, using a toy dataset Demo.twolevel that is part of
the lavaan package, you need to add the cluster= argument to the sem/lavaan function call:

fit <- sem(model = model, data = Demo.twolevel, cluster = "cluster")

The output looks similar to a multigroup SEM output, but where the two groups are now the within and the

between level respectively.

summary (£fit)

lavaan 0.6-18 ended normally after 36 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 20
Number of observations 2500
Number of clusters [cluster] 200
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Model Test User Model:
Test statistic
Degrees of freedom
P-value (Chi-square)

Parameter Estimates:

Standard errors
Information

Observed information based on

Level 1 [within]:

Latent Variables:

Estimate
fw =~
y1 1.000
y2 0.774
y3 0.734
Regressions:
Estimate
fw ~
x1 0.510
x2 0.407
x3 0.205
Variances:
Estimate
.yl 0.986
.y2 1.066
.y3 1.011
fw 0.546
Level 2 [cluster]:
Latent Variables:
Estimate
fb =~
y1 1.000
y2 0.717
y3 0.587
Regressions:

Std.

Std.

o

Std.
.046
.039
.037
.040

O O O O

Std.

Err

.034
.033

Err

.023
.022
.021

Err

Err

.052
.048

z-value

22.671
22.355

z-value

22.037
18.273
9.740

z-value
21.591
27.271
27.662
13.539

z-value

13.824
12.329

8.092
10
0.620

Standard
Observed
Hessian

P(>1z)

0.000
0.000

P(>1z)

0.000
0.000
0.000

P(>lzl)
0.000
0.000
0.000
0.000

P(>1z)

0.000
0.000
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Estimate Std.Err z-value P(Clzl|)

fb ~
wl 0.165 0.079 2.093 0.036
w2 0.131 0.076 1.715 0.086
Intercepts:
Estimate Std.Err z-value P(lzl)
.yl 0.024 0.075 0.327 0.743
.y2 -0.016 0.060 -0.269 0.788
.y3 -0.042 0.054 -0.777 0.437
Variances:
Estimate Std.Err z-value P(lzl)
.yl 0.058 0.047 1.213 0.225
.y2 0.120 0.031 3.825 0.000
.y3 0.149 0.028 5.319 0.000
.fb 0.899 0.118 7.592 0.000

After fitting the model, you can inspect the intra-class correlations:

lavInspect(fit, "icc")

yl y2 y3 x1 x2 x3
0.331 0.263 0.232 0.000 0.000 0.000

The see the unrestricted (hl) within and between means and covariances, you can use

lavInspect(fit, "h1")

$within
$within$cov
yi y2 y3 x1 x2 x3
y1 2.000
y2 0.789 1.674
y3 0.749 0.564 1.557
x1 0.489 0.393 0.376 0.982
x2 0.416 0.322 0.299 0.001 1.011
x3 0.221 0.160 0.155 -0.006 0.008 1.045
$within$mean

yi y2 y3 x1 x2 x3
0.000 0.000 0.000 -0.007 -0.003 0.020

$cluster
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$cluster$cov

yi y2
vyl 0.992
y2 0.668 0.598
y3 0.548 0.391
wl 0.125 0.119
w2 0.086 0.057
$cluster$mean
vyl y2

0.020 -0.019 -0

y3 wl w2
0.469
0.036 0.870

0.130 -0.128 0.931

y3 wl w2

.045 0.052 -0.091

17.2 Important notes

e note that in level: 1 the colon follows the level keyword; if you type level 1:, you will get an error

e you must specify a model for each level; the following syntax is not allowed and will produce an error:

model <-
level: 1
fw =~ y1l + y2 + y3
fw ~ x1 + x2 + x3
level: 2

e if you do not have a model in mind for level 2, you can specify a saturated level by adding all variances
and covariances of the endogenous variables (here: y1, y2 and y3):

model <-
level: 1
fw =~ y1l + y2 + y3
fw ~ x1 + x2 + x3
level: 2
yl ~~ y1 + y2 + y3
y2 ~~ y2 + y3
y3 -~ y3

17.3 Convergence issues and solutions

By default, the current version of lavaan (0.6) uses a quasi-Newton procedure to maximize the loglikelihood of
the data given the model (just like in the single-level case). For most model and data combinations, this will
work fine (and fast). However, every now and then, you may experience convergence issues.
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Non-convergence is typically a sign that something is not quite right with either your model, or your data.
Typical settings are: a small number of clusters, in combination with (almost) no variance of an endogenous
variable at the between level.

However, if you believe nothing is wrong, you may want to try another optimization procedure. The current
version of lavaan allows for using the Expectation Maximization (EM) algorithm as an alternative. To switch
to the EM algorithm, you can use:

fit <- sem(model = model, data = Demo.twolevel, cluster = '"cluster",
verbose = TRUE, optim.method = "em")

As the EM algorithm is not accelerated yet, this may take a long time. It is not unusual that more than 10000
iterations are needed to reach a solution. To control when the EM algorithm stops, you can set the stopping
criteria as follows:

fit <- sem(model = model, data = Demo.twolevel, cluster = "cluster",
verbose = TRUE, optim.method = "em", em.iter.max = 20000,
em.fx.tol = 1e-08, em.dx.tol = 1e-04)

The em.fx.tol argument is used to monitor the change in loglikelihood between the current step and the
previous step. If this change is smaller than em.fx.tol, the algorithm stops. The em.dx.tol argument is used
to monitor the (unscaled) gradient. When a solution is reached, all elements of the gradient should be near
zero. When the largest gradient element is smaller than em.dx.tol, the algorithm stops.

A word of caution: the EM algorithm can always be forced to ‘converge’ (perhaps after changing the stopping
criteria), but that does not mean you have a model/dataset combination that deserves to converge.

67



18 ESEM and EFA

If a measurement model contains multiple latent variables (factors), we usually know which indicators belong
to each factor. We call this the factor structure. Confirmatory factor analysis can be used to check if this a
priori factor structure holds in the data. There are settings, however, where the factor structure is unclear,
and we wish to rotate the solution in order to find a suitable structure in a given model. When the model
also includes a structural part (i.e., regressions among the latent variables), this is referred to as exploratory
structural equation modeling or ESEM. If there is only a measurement part, this is called exploratory factor
analysis (EFA). What they have in common is that the factor structure (for one or more blocks) is found by
means of rotation.

18.1 ESEM

To illustrate how ESEM works in lavaan, consider the following syntax:

model <- '
# efa block 1
efa("efal")*f1 +
efa("efal")*xf2 =~ x1 + x2 + x3 + x4 + x5 + x6

# efa block 2
efa("efa2")*f3 +
efa("efa2")*f4 =~ yl + y2 + y3 + y4 + yb + y6

# cfa block
f5 =~ z7 + z8 + z9
f6 =~ z10 + z11 + z12

# regressions
£3 ~ f1 + £2
f4 ~ £3

This model syntax defines six latent variables (or factors). For f5 and {6, the factor structure is known, and
they belong to a regular CFA block. But for f1 and 2, the factor structure is not known, and we will use a
rotation method to find an appropiate structure. The f1 and {2 factors belong together in an EFA block that is
(arbitrarily) named efal. The efa("efal")* modifier just before f1 and f2 is used to alert lavaan that these
two factors belong to the same EFA block. The factors f3 and 4 belong to a different EFA block (named efa?2)
and will be rotated independently. The structural part of the model is given as usual. To fit this model, we
could call the sem() function as follows:
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fit <- sem(model = model, data = myData, rotation = "geomin")

Different rotation criteria are available, and many rotation options can be provided (see the manual page for
the efa() function for an overview).

To illustrate ESEM, we will borrow an example from the Mplus User’s Guide (example 5.25). First we read in
the data:

exb_25 <- read.table("http://statmodel.com/usersguide/chap5/ex5.25.dat")
names (ex5_25) = paste0("y",1:12)

The model syntax contains a single EFA block (efal for factors f1 and {2) and single CFA block (for f3 and
f4):

model <- '
# efa block
efa("efal")*f1 +
efa("efal")*f2 =~ y1l + y2 + y3 + y4 + yb + y6

# cfa block
£f3 =~ y7 + y8 + y9
f4 =~ y10 + y11 + y12

# regressions

£f3 ~ f1 + f2
f4 ~ £3

The following command illustrates the use of various rotation arguments:

fit <- sem(model = model, data = ex5_25, rotation = "geomin",
# mimic Mplus
information = "observed",
rotation.args = list(rstarts = 30, row.weights = "none",

algorithm = "gpa", std.ov = TRUE,
geomin.epsilon = 0.0001))
summary (£fit)

lavaan 0.6-18 ended normally after 35 iterations

Estimator ML
Optimization method NLMINB
Number of model parameters 34
Row rank of the constraints matrix 2
Rotation method GEOMIN OBLIQUE
Geomin epsilon le-04
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Rotation algorithm (rstarts)
Standardized metric
Row weights

Number of observations
Model Test User Model:

Test statistic

Degrees of freedom

P-value (Chi-square)
Parameter Estimates:

Standard errors

Information

Observed information based on

Latent Variables:
Estimate Std.Err z-value

f1 =~ efal
yi 0.751 0.048 15.621
y2 0.858 0.042 20.469
y3 0.736 0.045 16.343
y4 0.036 0.051 0.712
y5 -0.028 0.049 -0.564
y6 0.002 0.003 0.694
f2 =~ efal
y1 0.034 0.045 0.758
y2 -0.002 0.015 -0.151
y3 -0.008 0.035 -0.219
y4 0.763 0.050 15.374
y5 0.810 0.048 16.796
y6 0.802 0.041 19.467
£3 =~
y7 1.000
y8 0.894 0.021 41.936
y9 0.902 0.021 42.479
f4 =~
y10 1.000
yi1 0.734 0.028 26.424
yi12 0.684 0.028 24.405
Regressions:
Estimate Std.Err =z-value
£3 ~
f1 0.493 0.058 8.455

GPA (30)
TRUE
None

500

51.353
46
0.272

Standard
Observed
Hessian

P(>lzl)

.000
.000
.000
.476
.573
.488

O O O O O o

.449
.880
.827
.000
.000
.000

O O O O o o

o

.000
0.000

0.000
0.000

PC>lzl)

0.000
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f2 0.721 0.057 12.755 0.000

f4 ~
£3 0.546 0.032 16.975 0.000
Covariances:
Estimate Std.Err =z-value P(>|z])
f1 ~~
2 0.479 0.053 9.072 0.000
Variances:

Estimate Std.Err =z-value P(>|zl)
.yl 0.376 0.034 11.064 0.000
.y2 0.290 0.035 8.239 0.000
.y3 0.406 0.034 11.817 0.000
.y4 0.408 0.035 11.742 0.000
.yb 0.329 0.033 10.046 0.000
.y6 0.393 0.035 11.073 0.000
.y7 0.183 0.019 9.796 0.000
.y8 0.191 0.017 11.269 0.000
.y9 0.181 0.017 10.812 0.000
.y10 0.240 0.027 8.746 0.000
.y11 0.183 0.017 10.791 0.000
.y12 0.213 0.018 11.998 0.000
f1 1.000
2 1.000
.£3 0.527 0.049 10.644 0.000
.f4 0.565 0.049 11.488 0.000

18.2 Exploratory factor analysis (EFA)

When there is no structural part (i.e., no regressions among the latent variables) and there is only a single EFA
block, then ESEM reduces to exploratory factor analysis (EFA). Using the Holzinger and Swineford data, we
could specify an EFA with three factors as follows:

efa.model <- '

efa("efa")*f1 +

efa("efa")*f2 +

efa("efa")*f3 =~ x1 + x2 + x3 + x4 + xb + x6 + x7 + x8 + x9
fit <- cfa(efa.model, data = HolzingerSwineford1939)
summary(fit, standardized = TRUE)

lavaan 0.6-18 ended normally after 1 iteration

Estimator ML
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Optimization method NLMINB

Number of model parameters 39
Row rank of the constraints matrix 6
Rotation method GEOMIN OBLIQUE
Geomin epsilon 0.001
Rotation algorithm (rstarts) GPA (30)
Standardized metric TRUE
Row weights None
Number of observations 301

Model Test User Model:

Test statistic 22.897
Degrees of freedom 12
P-value (Chi-square) 0.029

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (hl) model Structured

Latent Variables:
Estimate Std.Err =z-value P(C|zl) Std.lv Std.all

f1 =~ efa
x1 0.712 0.092 7.771 0.000 0.712 0.611
x2 0.628 0.104 6.063 0.000 0.628 0.534
x3 0.796 0.096 8.255 0.000 0.796 0.705
x4 0.011 0.011 0.944 0.345 0.011 0.009
x5 -0.107 0.089 -1.203 0.229 -0.107 -0.083
x6 0.076 0.073 1.028 0.304 0.076 0.069
x7 -0.278 0.109 -2.538 0.011 -0.278 -0.255
x8 0.012 0.008 1.371 0.170 0.012 0.011
x9 0.314 0.076 4.142 0.000 0.314 0.312

f2 =~ efa
x1 0.198 0.103 1.917 0.055 0.198 0.170
x2 0.039 0.092 0.424 0.672 0.039 0.033
x3 -0.106 0.111 -0.963 0.335 -0.106 -0.094
x4 0.981 0.058 16.850 0.000 0.981 0.844
x5 1.1563 0.074 15.545 0.000 1.1563 0.895
x6 0.886 0.062 14.338 0.000 0.886 0.810
x7 0.011 0.012 0.923 0.356 0.011 0.010
x8 -0.075 0.066 -1.135 0.256 -0.075 -0.074
x9 -0.002 0.007 -0.315 0.753 -0.002 -0.002

£f3 =~ efa

72



x1 0.015 0.048 0.302 0.762 0.015 0.012
x2 -0.166 0.092 -1.813 0.070 -0.166 -0.141
x3 0.002 0.048 0.036 0.971 0.002 0.002
x4 0.004 0.047 0.091 0.927 0.004 0.004
x5 0.012 0.036 0.322 0.747 0.012 0.009
x6 -0.017 0.041 -0.409 0.683 -0.017 -0.015
x7 0.843 0.105 7.999 0.000 0.843 0.775
x8 0.752 0.076 9.893 0.000 0.752 0.744
x9 0.484 0.070 6.954 0.000 0.484 0.481
Covariances:
Estimate Std.Err z-value P(lzl) Std.lv Std.all
f1 ~~
f2 0.373 0.118 3.173 0.002 0.373 0.373
£3 0.432 0.097 4.465 0.000 0.432 0.432
f2 ~~
£3 0.306 0.081 3.775 0.000 0.306 0.306
Variances:

Estimate Std.Err z-value P(>|zl) Std.lv Std.all
.x1 0.696 0.087 8.038 0.000 0.696 0.513
.x2 1.035 0.102 10.151 0.000 1.035 0.749
.x3 0.692 0.097 7.134 0.000 0.692 0.543
.x4 0.377 0.048 7.902 0.000 0.377 0.279
.xb 0.403 0.061 6.590 0.000 0.403 0.243
.x6 0.365 0.042 8.613 0.000 0.365 0.305
X7 0.594 0.106 5.624 0.000 0.594 0.502
.x8 0.479 0.080 5.958 0.000 0.479 0.469
.x9 0.551 0.060 9.132 0.000 0.551 0.543
f1 1.000 1.000 1.000
f2 1.000 1.000 1.000
£3 1.000 1.000 1.000

In version 0.6-13, we added added the efa() function to simplify the input, and to produce output that is more
in line with traditional EFA software in R. There is no need to create a model syntax. You only need to provide
the data, and the number of factors. Instead of a single number, you can also specify a range of numbers. For
example:

var.names <- paste("x", 1:9, sep = "")
fit <- efa(data = HolzingerSwineford1939[,var.names], nfactors = 1:3)
summary (£fit)

This is lavaan 0.6-18 —-- running exploratory factor analysis
Estimator ML
Rotation method GEOMIN OBLIQUE
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Geomin epsilon 0.001

Rotation algorithm (rstarts) GPA (30)
Standardized metric TRUE
Row weights None
Number of observations 301

Overview models:
aic bic sabic  chisq df pvalue cfi rmsea
nfactors = 1 7738.448 7805.176 7748.091 312.264 27 0.000 0.677 0.187
nfactors = 2 7572.491 7668.876 7586.418 130.306 19 0.000 0.874 0.140
nfactors = 3 7479.081 7601.416 7496.758 22.897 12 0.029 0.988 0.055

Eigenvalues correlation matrix:

evl ev2 ev3 evd evb ev6 ev’ ev8 ev9
3.216 1.639 1.365 0.699 0.584 0.500 0.473 0.286 0.238

Number of factors: 1

Standardized loadings: (x = significant at 1% level)

f1 unique.var communalities
x1 0.438* 0.808 0.192
x2 Lk 0.951 0.049
x3 Lk 0.950 0.050
x4 0.848x% 0.281 0.719
x5 0.841x% 0.293 0.707
x6 0.838% 0.298 0.702
x7 .k 0.967 0.033
x8 Lk 0.960 0.040
x9 0.307* 0.906 0.094
f1
Sum of squared loadings 2.586
Proportion of total 1.000
Proportion var 0.287
Cumulative var 0.287

Number of factors: 2

Standardized loadings: (* = significant at 1 level)

f1 2 unique.var communalities
x1 .k 0.430% 0.673 0.327
x2 . Lk 0.906 0.094
x3 0.456% 0.783 0.217
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x4 0.851x% 0.274 0.726
x5 0.868% 0.264 0.736
x6 0.825% 0.302 0.698
x7 0.448x* 0.802 0.198
x8 0.627x* 0.630 0.370
x9 0.734x* 0.458 0.542

f1 £f2 total
Sum of sq (obliq) loadings 2.280 1.629 3.909

Proportion of total 0.583 0.417 1.000
Proportion var 0.253 0.181 0.434
Cumulative var 0.253 0.434 0.434

Factor correlations: (x = significant at 1% level)
f1 2

f1 1.000

£f2 0.339% 1.000

Number of factors: 3

Standardized loadings: (* = significant at 1% level)

f1 2 £3 unique.var communalities
x1 0.611x% 0.513 0.487
x2 0.534x* 0.749 0.251
x3 0.705% 0.543 0.457
x4 0.844x 0.279 0.721
x5 0.895% 0.243 0.757
x6 0.810x% 0.305 0.695
x7 . 0.775% 0.502 0.498
x8 0.744x* 0.469 0.5631
x9 0.312% 0.481x% 0.543 0.457

£2 £3 f1 total
Sum of sq (oblig) loadings 2.215 1.343 1.297 4.855

Proportion of total 0.456 0.277 0.267 1.000
Proportion var 0.246 0.149 0.144 0.539
Cumulative var 0.246 0.395 0.539 0.539

Factor correlations: (* = significant at 1% level)

f1 f2 3
f1 1.000
f2 0.373%x 1.000
£3 0.432%x 0.306% 1.000
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